nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 05, No.221 83-88+96
An adaptive filter algorithm for passive co-tracking
Email:
DOI: 10.16358/j.issn.1009-1300.20220198
摘要:

为增强被动协同跟踪系统对复杂环境的适应性,提高跟踪精度和系统鲁棒性,提出了一种基于自适应滤波技术的目标跟踪算法。该算法通过基于Sage-Husa自适应噪声估计的无迹卡尔曼滤波对多站被动协同定位结果进行状态估计,并利用残差量的局部动态统计对噪声估计器进行改进,以提高噪声估计的准确性和稳定性。同时,引入协方差自相关量匹配判据来保证噪声方差阵的正定性,防止滤波发散。仿真结果表明,该方法可有效提高噪声估计精度,增强目标跟踪系统对环境的适应性,大幅提升跟踪性能。

Abstract:

In order to enhance the adaptability of passive co-tracking system in complex environment and improve the tracking accuracy, an adaptive filter algorithm for target tracking is proposed. In the proposed framework, a UKF algorithm based on Sage-Husa filtering technique with improved noise estimator is applied to estimate the state result of passive co-tracking. To get better estimation accuracy, the noise estimator is improved by using the statistics of residual vectors instead of the single residual. In addition, a matching strategy based on self-correlation portion of the observation covariance is implemented, which can prevent the filtering divergence. The simulation results show that the proposed algorithm can improve the tracking accuracy and robustness effectively.

References

[1]何金刚,高刚.一种基于多弹协同定位的机动目标估计算法[J].兵器装备工程学报,2021,42(2):47-51.

[2] Zhang T,Liu C C,Cai Y Z. Maneuvering target tracking algorithm based on multi-station bearing-only passive location with incomplete observation[C]. 2014 33rd Chinese Control Conference,China:2014:7356-7360.

[3]陶涵.多种被动探测定位模式下的滤波跟踪技术研究[D].武汉:华中科技大学,2020.

[4] Gandhima M. Robust kalman filter based on a generalized maximum likelihood type estimator[J]. IEEE Transactions on Signal Processing,2010,58(5):2509-252.

[5]李琳,张修社,韩春雷,等.基于卡尔曼滤波和DDQN算法的无人机机动目标跟踪[J].战术导弹技术,2022(2):98-104.

[6] Reif K,Unbehauen R. The extended Kalman filter as an exponential observer for nonlinear systems[J]. IEEE Transactions on Signal Processing, 1999, 47(8):2324-2328.

[7] Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control,2000(3):1406-1409.

[8]叶泽浩,晏凯,宋亚伟,等.一种改进的强跟踪UKF及其在目标跟踪中的应用[J].空天预警研究学报,2022,36(2):85-90.

[9] Sage A P,Husa G W. Adaptive filtering with unknown prior statistics[C]. Proceedings of Joint Automatic Control Conference. Boulder,USA:ASME,1969:760-769.

[10]杨咚,余伟. Sage-Husa自适应滤波在大方位失准角初始对准的研究[J].红外与激光工程,2013,42(8):2197-2201.

[11]李宁,祝瑞辉,张勇刚.基于Sage-Husa算法的自适应平方根CKF目标跟踪方法[J].系统工程与电子技术,2014,36(10):1899-1905.

[12]陈林秀,郝明瑞,赵佳佳.混合噪声条件下的目标被动定位算法[J].兵工学报,2021,42(9):1923-1930.

[13]张常云.自适应滤波方法研究[J].航空学报,1998(s1):97-100.

[14]沈云峰,朱海,莫军,等.简化的Sage-Husa自适应滤波算法在组合导航中的应用及仿真[J].青岛大学学报(工程技术版),2001,16(1):44-47.

[15]魏伟,秦永元,张晓东,等.对Sage-Husa算法的改进[J].中国惯性技术学报,2012,20(6):9.

Basic Information:

DOI:10.16358/j.issn.1009-1300.20220198

China Classification Code:TN713;TJ765

Citation Information:

[1]杨月霜,田锦昌,池庆玺,等.基于自适应滤波技术的被动协同跟踪算法[J].战术导弹技术,2023,No.221(05):83-88+96.DOI:10.16358/j.issn.1009-1300.20220198.

Fund Information:

国家自然科学基金(U2141230)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search