| 203 | 0 | 13 | 
| Downloads | Citas | Reads | 
随着雷达和通信系统对频谱资源需求日益增长,加之现代战争对雷达生存能力提出的严峻挑战,研究了频谱共存下基于正交频分复用-线性调频波形(Orthogonal Frequency Division Multiplexing-Linear Frequency Modulation,OFDM-LFM)的机载组网雷达射频隐身波形优化算法。采用信干噪比(Signal to Interference Plus Noise Ratio,SINR)作为机载组网雷达探测性能表征指标。以满足雷达探测性能以及不干扰通信频谱为约束条件,以最小化机载组网雷达总辐射能量为优化目标,构建频谱共存下机载组网雷达射频隐身波形优化模型。在此基础上,针对上述非线性、凸优化模型,采用序列二次规划(Sequential Quadratic Programming,SQP)算法进行求解。构建基于OFDM-LFM的射频隐身波形多径回波模型,分析所设计射频隐身波形的探测性能和抗多径效应性能。仿真结果表明,所提算法能够有效降低机载组网雷达的总辐射能量,进而提升射频隐身性能;此外,基于OFDM-LFM的射频隐身波形具有良好的探测性能和抗多径效应性能。
Abstract:With the increasing demand for spectrum resources from radar and communication systems,coupled with the severe challenges posed by modern warfare to the survivability of radar, the radio frequency(RF) stealth waveform design algorithm for airborne network radar based on orthogonal frequency division multiplexing-linear frequency modulation(OFDM-LFM) under spectral coexistence is investigated. The signal to interference plus noise ratio(SINR) is adopted as the characterization index of airborne network radar detection performance. With the constraints of satisfying the radar detection performance and not interfering with the communication spectrum, and with the optimization objective of minimizing the total radiated energy of the airborne network radar, the RF stealth waveform optimization model of the airborne network radar is constructed under the spectrum coexistence. On this basis, the sequential quadratic programming(SQP)algorithm is used for solving the above nonlinear and convex optimisation model. Finally, the multipath echo model of RF stealth waveform based on OFDM-LFM is constructed to analyze the detection performance and anti-multipath effect performance of the designed RF stealth waveform. Simulation results show that the total radiated energy of the airborne network radar can be effectively reducd by the proposed algorithm, so as to improve the RF stealth performance. In addition, the RF stealth waveform based on OFDM-LFM has good detection performance and anti-multipath effect performance.
[1]薛磊,唐波,李达.面向频谱共存的MIMO雷达波形设计综述[J].信息对抗技术,2023, 2(4):70-92.
[2] Augusto A,Antonio M,Huang Y,et al. A new radar waveform design algorithm with improved feasibility for spectral coexistence[J]. IEEE Transactions on Aerospace and Electronic Systems,2015,51:1029-1038.
[3] Shane F,Rylee G M and Justin G Metcalf. Deep reinforcement learning for cognitive radar spectrum sharing:A continuous control approach[J]. IEEE Transactions on Radar Systems,2024,2:125-137.
[4] Quentin B, Faouzi B, Jacques P. On spectral coexistence of CP-OFDM and FB-MC waveforms in 5G networks[J]. IEEE Access,2017,5:13883-13900.
[5] Zhang C,Pei J F,Zhang Y J,et al. An efficient waveform design method with spectral coexistence and pulselike autocorrelation function[C]. 2024 IEEE Radar Conference,Denver,USA,2024.
[6]时晨光,董璟,周建江.频谱共存下机载组网雷达辐射资源与航迹规划联合优化算法[J].无人系统技术,2023,6(5):98-109.
[7]姚誉,李泽清,范文等.基于ABSUM的MIMO雷达频谱兼容波形设计[J].雷达学报,2022,11(4):543-556.
[8] Shammi A D,Alex C,Hans M,et al. Waveform codesign for radar-communication spectral coexistence via dynamic programming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5):4315-4326.
[9] Cheng Z,Liao B,He Z,et al. Joint design for MIMO radar and downlink communication systems coexistence[C]. 2019 IEEE International Conference on Acoustics,Speech and Signal Processing, Brighton, UK, 2019,4270-4274.
[10] Marian B,Visa K. Radar waveform optimization for target parameter estimation in cooperative radar communications systems[J]. IEEE Transactions on Aerospace and Electronic Systems,2019,55(5):2314-2326.
[11] Su Y,Cheng Z,He Z,et al. Communication-awareness adaptive resource scheduling strategy for multiple target tracking in a multiple radar system[J]. IET Signal Processing,2022,16(7):750-761.
[12] Aitor C S,Nikita P,Maria G Huici,et al. Optimized time-frequency allocation in MIMO NU-OTFS radar for enhanced performance under spectral constraints[C].2024 IEEE Radar Conference, Denver, CO, USA, 2024.
[13]时晨光,董璟,周建江,等.飞行器射频隐身技术研究综述[J].系统工程与电子技术,2021,43(6):1452-146.
[14]张巍巍,时晨光,周建江,等.面向射频隐身的组网雷达多目标跟踪波形优化设计方法[J].无人系统技术,2021,4(5):53-60.
[15] Shi C G,Wang F,Sellathurai M,et al. Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence[J]. IEEE Transactions on Signal Processing, 2018, 66:1316-1330.
[16]李琬璐,相征,任鹏.基于FBMC信号的低截获雷达通信一体化波形设计[J].雷达学报,2023,12(2):287-296.
[17] Liu X,Zhang T,Shi Q,et al. LPI radar waveform design with desired cyclic spectrum and pulse compression properties[J]. IEEE Transactions on Vehicular Technology,2023,72(5):6789-6793.
[18] Liu X, Yuan Y, Zhang T, et al. Integrated transmit waveform and RIS phase shift design for LPI detection and communication[J]. IEEE Transactions on Wireless Communications,2024,23(6):5663-5679.
[19] Ric R,Bae J,Goodman N. Theory and application of SNR and mutual information matched illumination waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems,2011,47:912-926.
[20]虞泓波.相控阵及MIMO雷达自适应稳健波束形成方法研究[D].西安:西安电子科技大学,2017.
[21]熊智敏,王党卫,李星辉,等.多径条件下米波OFDM-MIMO雷达波束性能及特性分析[J].国防科技大学学报,2021,43(4):136-144.
Basic Information:
DOI:10.16358/j.issn.1009-1300.20240511
China Classification Code:TN959.73;V243.2
Citation Information:
[1]王健,时晨光,周建江,等.频谱共存下基于OFDM-LFM的机载组网雷达射频隐身波形优化算法[J].战术导弹技术,2024,No.227(05):111-121.DOI:10.16358/j.issn.1009-1300.20240511.
Fund Information:
国家自然科学基金面上项目(62271247); 江苏省自然科学基金优秀青年基金项目(BK20240181); 江苏高校“青蓝工程”; 国防基础科研计划资助项目(JCKY2021210B004); 航空科学基金(20220055052001); 江淮前沿技术协同创新中心追梦基金课题(2023-ZM01D001)