334 | 5 | 5 |
Downloads | Citas | Reads |
针对组网雷达与多干扰机之间的对抗博弈问题,研究了基于非合作博弈的组网雷达辐射功率控制算法。首先,将组网雷达与干扰机作为博弈双方,组网雷达旨在满足一定信干噪比的约束下,通过优化分配各雷达辐射功率,最小化组网雷达的总辐射功率;而干扰机则通过感知雷达的辐射功率,设计最优的干扰策略,最大化对雷达系统的干扰效果。在此基础上,通过分析组网雷达与干扰机的最佳响应策略,证明了纳什均衡的存在性和唯一性。最后,采用KKT (Karush-KuhnTucker)条件得到了各雷达辐射功率的迭代表达式,并提出了一种基于非合作博弈的组网雷达辐射功率求解算法。仿真结果表明,该算法不仅降低了组网雷达的总辐射功率,而且提高了其抗干扰能力。
Abstract:Aiming at the conflict game problem between a radar network and multiple jammers, a noncooperative game-based transmit power control approach for the radar network is studied. Firstly, it is formulated that the radar network and the jammer are taken as the two players of the proposed non-cooperative game.The networking radar aims to minimize the total transmit power of the radar network by optimizing the distribution of the transmit power of each radar under the constraint of a certain SINR. While the intelligent jammers design the optimal jamming strategies by observing the transmit power of radars to maximize the jamming effect on the radar system. On this basis, the existence and uniqueness of Nash equilibrium are proved by analyzing the best response strategies of the radar network and the jammers. Finally,the iterative expression of the transmit power of each radar is obtained through the analysis of the KKT conditions, and a noncooperative game-based power allocation approach is developed to solve the power allocation problem for the radar network. Simulation results demonstrate that the proposed approach not only decreases the total power consumption but also enhances anti-jamming performance.
[1] Skolnik, Merrill I. Introduction to radar systems[M].New York:Mcgraw Hill,2001.
[2] Bachmann D J, Evans R J, Moran B. Game theoretic analysis of adaptive radar jamming[J]. IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):1081-1100.
[3] Song X F,Peter W,Zhou S L,et al. The MIMO radar and jammer games[J]. IEEE Transactions on Signal Processing,2012,60(2):687-699.
[4] Lan X,Li W,Wang X L,et al. MIMO radar and target Stackelberg game in the presence of clutter[J]. IEEE Sensors Journal,2015,15(12):6912-6920.
[5] Gao H, Wang J, Jiang C X, et al. Equilibrium between a statistical MIMO radar and a jammer[C].2015 IEEE Radar Conference, Arlington, VA, May10-15,2015.
[6] Wang L L, Zeng Y H, Li Y C, et al. An optimal jamming strategy aiming at cognitive MIMO radar[C].2016 CIE International Conference on Radar,Guangzhou,October 10-13,2016.
[7] Deligiannis A, Rossetti G, Panoui A, et al. Power allocation game between a radar network and multiple jammers[C]. 2016 IEEE Radar Conference,Philadelphia,PA,May 2-6,2016.
[8] Panoui A,Lambotharan S,Chambers J. Game theoretic power allocation technique for a MIMO radar network[C]. 2014 6th International Symposium on Communications, Control and Signal Processing(ISCCSP),Athens,Greece,May 21-23,2014.
[9] Deligiannis A, Panoui A, Lambotharan S, et al.Game-theoretic power allocation and the Nash equilibrium analysis for a multistatic MIMO radar network[J]. IEEE Transactions on Signal Processing,2017,65(24):6397-6408.
[10] Deligiannis A, Lambotharan S, Chambers J. Game theoretic analysis for MIMO radars with multiple targets[J]. IEEE Transactions on Aerospace and Electronic Systems,2016,52(6):2760-2774.
[11] Andrey G, Wade T. An OFDM-based dual radar/communication system facing uncertain jamming power[C]. 2017 IEEE Conference on Communications and Network Security(CNS), Las Vegas, NV, USA,October 9-11,2017.
[12] Andrey G, Wade T, Petropulu A. A dual radar and communication system facing uncertainty about a jammer’s capability[C]. 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,CA,USA,October 28-31,2018.
[13] Shi C G,Wang F,Mathini S,et al. Non-cooperative game theoretic power allocation strategy for distributed multiple-radar architecture in a spectrum sharing environment[J]. IEEE Access, 2018, 6:17787-17800.
[14] Chenguang S, Wei Q, Fei W, et al. Power control scheme for spectral coexisting multistatic radar and massive MIMO communication systems under uncertainties:a robust Stackelberg game model[J].Digital Signal Processing,2019,94:146-155.
[15]时晨光,丁凌涛,周建江,等.基于Stackelberg博弈的有人机/无人机混合集群辐射功率控制算法[J].无人系统技术,2020,3(4):29-41.
[16]李伟,王泓霖,郑家毅,等.博弈条件下雷达波形设计策略研究[J].电子与信息学报,2019,41(11):2654-2660.
[17] Wang H L, Li W, Wang H, et al. Radar waveform strategy based on game theory[J]. Radioengineering,2019,28(4):757-764.
[18]赫彬,苏洪涛.一种多目标与多基地雷达之间的博弈策略[J].西安电子科技大学学报,2021,48(2):124-131.
Basic Information:
DOI:10.16358/j.issn.1009-1300.2021.1.115
China Classification Code:TN974;O225
Citation Information:
[1]吴家乐,时晨光,周建江.基于非合作博弈的组网雷达辐射功率控制算法[J].战术导弹技术,2021,No.210(06):11-19+37.DOI:10.16358/j.issn.1009-1300.2021.1.115.
Fund Information:
国家自然科学基金(61801212); 装备预研重点实验室基金(6142401200402); 国防科技创新特区资助; 江苏省自然科学基金(BK20180423); 航空科学基金(20200020052002、20200020052005)