279 | 8 | 3 |
Downloads | Citas | Reads |
在地形辅助导航中,粒子滤波由于其良好的实时性及对地形免线性化处理的特性而广泛应用。但该滤波算法也面临着粒子退化、高维空间"维数灾难"的问题,为提升导航性能,提出一种融合神经网络的RBPF算法。在SITAN系统基础上,以粒子滤波代替卡尔曼滤波,建立该系统状态空间模型。在粒子滤波重采样步骤前引入反向传播(BP)神经网络,调整奇异点,平滑权值,并采用Rao-Blackwellized (RB)理论对复杂高维模型进行结构分解,保障导航实时性。通过仿真生成飞行轨迹,与真实的地形高程图进行匹配定位,设定不同粒子数目以改变计算量大小,区别仿真时间。仿真实验证明该算法具备良好实时性,能有效改善粒子滤波缺陷,提升导航定位性能。
Abstract:Particle filter is widely used in terrain aided navigation because of its good real-time performance and non-linearization of terrain. However, this filtering algorithm also faces the problems of particle degradation and“dimensional disaster”in high dimensional space. In order to improve the navigation accuracy, a RBPF algorithm based on neural network fusion is proposed.Based on SITAN system, particle filter is used to replace Kalman filter, and the state space model of SITAN system is established. The Back Propagation(BP) neural network is introduced before the resampling step of particle filter to adjust singular points and smooth weights, and the Rao-Blackwellized(RB) theory is used to decompose the complex high-dimensional model to ensure the real-time navigation. The flight trajectory is generated through simulation,which is matched and positioned with the real terrain elevation map. Different particle numbers are set to change the amount of calculation, and the simulation time is distinguished.The simulation results show that the algorithm has good real-time performance, can effectively improve the defect of particle filtering, and improve the performance of navigation and positioning.
[1]牛小骥,班亚龙,张提升,等.GNSS/INS深组合技术研究进展与展望[J].航空学报,2016,37(10):2895-2908.
[2]杜小菁,阎天航,王康,等.GPS拒止区域的辅助INS导航方法综述[J].战术导弹技术,2021,(1):84-92.
[3]Hagen O K,Anonsen K B,Skaugen A.Robust surface vessel navigation using terrain navigation[C].Oceans,Bergen,2013 MTS/IEEE,2013.
[4]Hagen O K,Anonsen K B.Using terrain navigation to improve marine vessel navigation systems[J].Marine Technology Society Journal,2014,48(2):45-58.
[5]Yang Z,Zhu Z,Zhao W.A triangle matching algorithm for gravity-aided navigation for underwater vehicles[J].Journal of Navigation,2014,67(2):227-247.
[6]Shen J,Shi J,Xiong L.Modeling of underwater terrain aided navigation and terrain matching algorithm simulation[C].Asian Simulation Conference,Springer Singapore,2016:424-432.
[7]张静远,徐振烊,王新鹏.基于TERCOM算法的水下地形辅助导航误差研究[J].海军工程大学学报,2020,32(5):44-49.
[8]Eroglu O,Yilmaz G.A terrain referenced UAVlocalization algorithm using binary search method[J].Journal of Intelligent&Robotic Systems,2014,73(1-4):309-323.
[9]邹炜,孙玉臣.水下地形匹配辅助导航技术研究[J].舰船电子工程,2017,37(8):5-10.
[10]吴康,赵龙.适用航空的地形匹配导航算法研究[J].压电与声光,2010,32(5):754-757.
[11]Park J,Kim Y,Bang H.A new measurement model of Interferometric radar altimeter for terrain referenced navigation using particle filter[C].Navigation Conference,IEEE,2017.
[12]Francisco,Curado,Teixeira,et al.Robust particle filter formulations with application to terrain-aided navigation[J].International Journal of Adaptive Control&Signal Processing,2017.
[13]韩月,陈鹏云,沈鹏.基于改进粒子滤波的AUV海底地形辅助定位方法[J].智能系统学报,2020,1562(3):553-559.
[14]程向红,范时秒.基于改进高斯和粒子滤波的海底地形辅助导航[J].中国惯性技术学报,2019,27(2):199-204.
[15]Qicong P,Wen Q.An improved particle filter algorithm based on neural network for target tracking[C].International Conference on Communications,IEEE,2006.
[16]Schon T,Gustafsson F,Nordlund P J.Marginalized particle filters for mixed linear/nonlinear state-space models[J].IEEE Trans Signal Processing,2005,53(7):2279-2289.
Basic Information:
DOI:10.16358/j.issn.1009-1300.2021.1.033
China Classification Code:TP183;TN96
Citation Information:
[1]吴银锋,吴德伟,戴传金,等.基于融合神经网络RBPF算法的地形辅助导航研究[J].战术导弹技术,2021,No.209(05):55-62+70.DOI:10.16358/j.issn.1009-1300.2021.1.033.
Fund Information:
国家自然科学基金(61973314)