| 177 | 2 | 8 | 
| Downloads | Citas | Reads | 
针对非理想检测环境下多雷达网络对多目标跟踪场景,提出了一种面向射频隐身的驻留时间优化分配算法。首先,推导了非理想检测环境下目标跟踪误差的贝叶斯克拉美-罗下界解析表达式,并将其作为目标跟踪性能的衡量指标。其次,将各雷达节点照射目标的驻留时间总和作为优化目标函数,将系统射频辐射资源以及给定的目标跟踪精度门限作为约束条件,建立了非理想检测环境下面向射频隐身的多雷达网络多目标跟踪驻留时间优化分配模型。在此基础上,采用基于内点法与循环最小法的两步分解算法对上述优化模型进行求解。仿真结果表明,相较于驻留时间均匀分配算法,所提算法可以有效降低多雷达网络的驻留时间消耗,提升系统的射频隐身性能;另外,随着检测概率逐渐减小,系统需要更多的驻留时间,使得射频隐身性能逐渐变差。
Abstract:Aiming at a multi-target tracking scenario of multiple radar networks under imperfect detection environment, a radio frequency stealth-based optimal dwell time allocation algorithm is proposed.Firstly, the analytical expression of Bayesian Cramer-Rao lower bound(BCRLB) of target tracking error under imperfect detection environment is derived and used as the metric of target tracking performance. Secondly, the total dwell time of each target illuminated by each radar node is used as the objective function, and the system radio frequency resources and the predetermined target tracking accuracy threshold are used as constraints,therefore, the radio frequency stealth-based optimal dwell time allocation optimization model for multipletarget tracking in multiple radar networks under imperfect detection environment is established. Then, a twostep decomposition method based on the interior point method and cyclic minimum method is used to solve the above optimization model. The simulation results show that compared with the uniform dwell time allocation strategy, the proposed algorithm can effectively reduce the dwell time consumption of multi radar networks and improve the radio frequency stealth performance of the system. In addition, as the probability of detection gradually decreases, the system needs more and more dwell time, which makes the radio frequency stealth performance gradually worse.
[1] Zhang H W,Liu W J,Zhang Z J,et al. Joint target assignment and power allocation in multiple distributed MIMO radar networks[J]. IEEE Systems Journal,2021,15(1):694-704.
[2] Godrich H,Petropulu A P,Poor H V. Power allocation strategies for target localization in distributed multipleradar architectures[J]. IEEE Transactions on Signal Processing,2011,59(7):3226-3240.
[3] Godrich H, Petropulu A, Poor H V. Resource allocation schemes for target localization in distributed multiple radar architectures[C]. 2010 18th European Signal Processing Conference, Aalborg, Denmark,August 23-27,2010.
[4] Shi Y C, Jiu B, Yan J K, et al. Data-driven radar selection and power allocation method for target tracking in multiple radar system[J]. IEEE Sensors Journal.2021,21(17):19296-19306.
[5]丁鹭飞,耿富录,陈建春.雷达原理(第5版)[M].北京:电子工业出版社,2014.
[6]时晨光,董璟,周建江,等.飞行器射频隐身技术研究综述[J].系统工程与电子技术,2021,43(6):1452-1467.
[7] Narykov A S,Krasnov O A,Yarovoy A. Algorithm for resource management of multiple phased array radars for target tracking[C]. Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey,July 9-12,2013.
[8] Wang X L,Yi W,Xie M C,et al. Time management for target tracking based on the predicted Bayesian Cramer-Rao lower bound in phase array radar system[C]. 2017 20th International Conference on Information Fusion(Fusion),Xi’an,China,July 10-13,2017.
[9]王祥丽,易伟,孔令讲.基于多目标跟踪的相控阵雷达波束和驻留时间联合分配方法[J].雷达学报,2017,6(6):1-9.
[10] Shi C G,Ding L T,Qiu W,et al. Joint optimization of target assignment and resource allocation for multi-target tracking in phased array radar network[C]. 2020 IEEE Radar Conference,Florence,Italy,September 21-25,2020.
[11] Zhang N, Song H, Tang J, et al. Power optimization for joint target position and velocity estimation in MIMO radar networks[C]. 2015 10th International Conference on Information, Communications and Signal Processing(ICICS),Singapore,December 2-4,2015.
[12] Shi C G,Ding L T,Wang F,et al. Low probability of intercept-based collaborative power and bandwidth allocation strategy for multi-target tracking in distributed radar network system[J]. IEEE Sensors Journal,2020,20(12):6367-6377.
[13]时晨光,丁琳涛,汪飞,等.面向射频隐身的组网雷达多目标跟踪下射频辐射资源优化分配算法[J].电子与信息学报,2021,43(3):539-546.
[14]张贞凯,许姣,田雨波.多目标跟踪时的自适应功率分配算法[J].信号处理,2017,33(S1):22-26.
[15]韩清华,潘明海,龙伟军.基于机会约束规划的机会阵雷达功率资源管理算法[J].系统工程与电子技术,2017,39(3):506-513.
[16] Yan J K,Pu W Q,Zhou S H,et al. Optimal resource allocation for asynchronous multiple targets tracking in heterogeneous radar networks[J]. IEEE Transactions on Signal Processing,2020,68:4055-4068.
[17] Farina A,Ristic B,Timmoneri L. Cramer-Rao bound for nonlinear filtering with PD≤1and its application to target tracking[J]. IEEE Transactions on Signal Processing,2002,50(8):1916-1924.
[18] Anastasio V,Farina A,Colone F,et al. Cramer-Rao bound with PD≤1for target localisation accuracy in multistatic passive radar[J]. IET Radar Sonar Navigation,2014,8:767-775.
[19] Sun J,Lu X J,Yuan Y,et al. Resource allocation for multi-target tracking in multi-static radar systems with imperfect detection performance[C]. 2020 IEEE Radar Conference, Florence, Italy, September 21-25,2020.
Basic Information:
DOI:10.16358/j.issn.1009-1300.2021.1.123
China Classification Code:TN953
Citation Information:
[1]唐志诚,时晨光,周建江.非理想检测环境下面向射频隐身的多雷达网络多目标跟踪驻留时间优化分配算法[J].战术导弹技术,2021,No.210(06):1-10.DOI:10.16358/j.issn.1009-1300.2021.1.123.
Fund Information:
国家自然科学基金(No.61801212); 装备预研重点实验室基金(No.6142401200402); 江苏自然科学基金(No.BK20180423); 国防科技创新特区资助; 航空自然科学基金(No.20200020052005,20200020052002)