nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, No.231 1-8
Review on the development of maneuvering decision-making method for autonomous air combat
Email:
DOI: 10.16358/j.issn.1009-1300.20240047
摘要:

人工智能技术在空战领域的广泛应用不仅颠覆了传统的空战模式,而且极大地推动了空战的无人化、自主化进程,对自主空战中的机动决策方法及其关键技术进行重点研究,将是打赢未来空战的核心关键。论述了自主机动决策方法在未来空战中的地位作用,给出了自主机动决策的定义。将空战中的自主机动决策主要方法作为切入点,阐述了自主空战机动决策研究中基于博弈理论、优化理论、人工智能这三类方法的优势、缺陷及其工程应用。立足当前自主空战决策建模中存在的不足与挑战,对自主空战机动决策研究的发展趋势进行分析,得出了未来空战决策技术手段将由计算机辅助决策向大数据驱动的智能决策升级发展这一趋势,为空战决策领域的相关研究提供有益的思路和参考。

Abstract:

The extensive integration of artificial intelligence technology in air combat has not only disrupted the traditional mode of air combat but also significantly advanced the unmanned and autonomous processes within this domain. A key focus on researching maneuvering decision methods and essential technologies in autonomous air combat will be pivotal to securing victory in future aerial engagements. The status and role of autonomous maneuvering decision methods in future air combat are initially examined, and definitions for such decisions are provided. Utilizing the primary methods of autonomous maneuvering decisions as a starting point, the advantages, limitations and engineering applications of three types of methodologies based on game theory, optimization theory and artificial intelligence are elaborated within research on autonomous air combat maneuvering decisions. Addressing current deficiencies and challenges in modeling for autonomous air combat decisions, trends in research related to these maneuvers are analyzed while the conclusion is concluded that future air combat decision-making technology will evolve from computer-assisted decisions to intelligent decisions driven by big data. The valuable insights and references are provided for further research within the field of aerial combat decision-making.

References

[1]单圣哲,杨孟超,张伟伟,等.自主空战连续决策方法[J].航空工程进展,2022,13(5):47-58.

[2] Eberhart R,Kennedy J. A new optimizer using particle swarm theory[J]. Proceedings of the sixth international symposium on micro machine and human science,1995:39-43.

[3] Greenwood N. A differential game in three dimensions:The aerial dogfight scenario[J]. Dynamics and Control,1992,2(2):161-200.

[4]钟友武,杨凌宇,柳嘉润,等.基于智能微分对策的自主机动决策方法研究[J].飞行力学,2008,26(6):29-33.

[5]傅莉,王晓光.无人战机近距空战微分对策建模研究[J].兵工学报,2012,33(10):1210-1216.

[6] Brugin G H,Owens A J. An adaptive maneuvering logic computer program for the simulation of one-on-one airto-air combat:NASA CR-2582[R]. Washington D C:NASA,1975:Vol I and II.

[7] Goodrich K,Mcmanus J. Development of a tactical guidance research and evaluation system(TGRES)[C].Flight Simulation Technologies Conference and Exhibit.Boston,MA,USA,August 14-16,1989.

[8] Poropudas J, Virtanen K. Game-theoretic validation and analysis of air combat simulation models[J]. IEEE Transactions on Systems, Man and Cybernetics 2010,40(5):1057-1070.

[9]顾佼佼,赵建军,刘卫华.基于博弈论及Memetic算法求解的空战机动决策框架[J].电光与控制,2015,22(1):20-23.

[10]王芳杰,黄鹏,张子俊,等.基于矩阵博弈的近距空战自主机动决策方法[J].航空兵器,2023,30(6):56-63.

[11] Austin F, Carbone G. Game theory for automated maneuvering during air-to-air combat[J]. Journal of Guidance,Control,and Dynamics,1990,13(6):1143-1149.

[12] Virtanen K,Karelahti J,Raivio T. Modeling air combat by a moving horizon influence diagram game[J]. Journal of Guidance,Control and Dynamics,2006,29(5):1080-1091.

[13]周思羽,吴文海,孔繁峨,等.基于随机决策准则的改进多级影响图机动决策方法[J].北京理工大学学报,2013,33(3):296-301.

[14]钟麟,佟明安,李盛,等.基于影响图对策的仿真元模型构造及使用方法[J].系统仿真学报,2018,30(8):2858-2863.

[15] Cimen E B. Air combat with particle swarm optimization and genetic algorithm[J]. Journal of Aeronautics and Space Technologies,2014,7(1):25-35.

[16]张涛,于雷,周中良,等.基于变权重伪并行遗传算法的空战机动决策[J].飞行力学,2012,30(5):470-474.

[17]邓可,彭宣淇,周德云,等.基于矩阵对策与遗传算法的无人机空战机动决策[J].火力与指挥控制,2019,44(12):61-66.

[18] Ernest N,Carroll D. Genetic Fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management,2016,6(1):1-8.

[19] McGrew J S,How J P,Williams B,et al. Air-combat strategy using Approximate Dynamic programming[J].Journal of Guidance, Control, and Dynamics, 2010,33(5):1641-1654.

[20]梅丹,刘锦涛,高丽,等.基于近似动态规划与零和博弈的空战机动决策[J].兵工自动化,2017,36(3):35-39.

[21]黄长强,赵克新,韩邦杰,等.一种近似动态规划的无人机机动决策方法[J].电子与信息学报,2018,40(10):2447-2452.

[22]姜龙亭,寇雅楠,王栋,等.改进近似动态规划法的攻击占位决策[J].火力与指挥控制,2019,44(7):135-141.

[23]张涛,于雷,周中良,等.基于人工势场启发粒子群算法的空战机动决策[J].电光与控制,2013,20(1):77-82.

[24]徐安,郑万泽,奚之飞,等.基于进化式决策树的超视距空战机动决策模型[J].现代防御技术,2022,50(6):68-82.

[25] LimaFilho G,Medeiros F L L,Passaro A. Decision support system of unmanned combat air vehicle in beyond visual range air combat based on artificial neural networks[J]. Journal of Aerospace Technology and Management,2021,13(5):1228-1245.

[26]张凤霞,王丕宏,李锋.基于神将网络的自动机动决策设计[J].电光与控制,2001(3):47-52.

[27]张宏鹏,黄长强,轩永波.基于深度神经网络的无人作战飞机自主空战机动决策[J].兵工学报,2020,41(6):1613-1622.

[28] Pope A P,Ide J S. Hierarchical reinforcement learning for air-to-air combat[C]. 2021 International Conference on Unmanned Aircraft Systems(ICUAS), Athens,Greece,June 15-18,2021.

[29]张强,杨任农,俞利新.基于Q-network强化学习的超视距空战机动决策[J].空军工程大学学报(自然科学版),2018,19(6):8-14.

[30]唐文泉,孙莹,杨奇,等.一种面向2V2近距空战的强化学习算法[J].战术导弹技术,2022(1):120-130.

[31] Bae J H, Jung H, Kim S, et al. Deep reinforcement learning-based air-to-air combat maneuver generation in a realistic environment[J]. IEEE Access,2023,11:26427-26440.

[32]李永丰,史静平,章卫国,等.深度强化学习的无人作战飞机空战机动决策[J].哈尔滨工业大学学报,2021,53(12):33-41.

[33]章胜,周攀,何扬,等.基于深度强化学习的空战机动决策试验[J].航空学报,2023, 44(10):122-135.

[34] Botvinick M, Wang J X, et al. Deep reinforcement learning and its neuroscientific implications[J]. Neuron,2020,107(4):603-616.

[35]孙智孝,杨晟琦,朴海音,等.未来智能空战发展综述[J].航空学报,2021,42(8):35-49.

[36]李波,黄晶益,万开方,等.基于深度强化学习的无人机系统应用研究综述[J].战术导弹技术,2023(1):58-68.

[37]钟赟,张杰勇,孙鹏,等.有人-无人机作战组织模型框架研究[J].战术导弹技术,2023(5):164-174.

Basic Information:

DOI:10.16358/j.issn.1009-1300.20240047

China Classification Code:E91

Citation Information:

[1]徐光达,周晓光,岳付昌等.自主空战机动决策方法发展综述[J].战术导弹技术,2025,No.231(03):1-8.DOI:10.16358/j.issn.1009-1300.20240047.

Fund Information:

国家社会科学基金(2023-SKJJ-B-035)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search