nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2017, 02, No.182 62-68
3-D Route Planning of UAV Based on SAPSO Algorithm
Email:
DOI: 10.16358/j.issn.1009-1300.2017.02.11
摘要:

运用粒子群算法(PSO)进行无人机三维航迹规划时,常通过引入最小威胁曲面来减小搜索空间,提高算法效率,但将威胁信息等效至数字地图中并不能准确反映威胁作用,且失去了利用地形遮蔽进行突防的优势。针对这一问题,从航迹规划的核心适应度函数出发,综合考虑火力威胁、地形威胁、高度威胁、机动性能四个方面约束,对适应度函数模型进行了分析改进。同时,针对粒子群算法易陷入局部最优的问题,提出将模拟退火粒子群算法(SAPSO)运用于航迹规划,利用模拟退火算法概率突跳能力进一步改善航迹质量。仿真结果表明,改进模型获得的三维航迹不仅满足各项约束,而且能够利用地形遮蔽进行突防,SAPSO算法改善航迹效果明显。

Abstract:

When using particle swarm optimization algorithm(PSO) performed 3-D route planning of UAV,the surface of minimum risk was often used to reduce the search space and improve the efficiency of the algorithm,but the threat information is equivalent to a digital map does not accurately reflect the action of threat,and also lost the advantage of using terrain masking to penetrate.To solve the problem,the fitness function models as the key of route planning was analyzed and improved by considering the fire threat,terrain threat,height threat and mobility in total four constraints.Meanwhile,aimed the problem that the PSO algorithm is easy to fall into local optimum,the simulated annealing particle swarm optimization algorithm(SAPSO) that possess probabilistic jumping property was applied to further improve the quality of the route.The results of simulation show that the 3-D route obtained by improved model not only meet the constraints,but also can use terrain masking to penetrate,the quality of route was obviously improved by SAPSO algorithm.

References

[1]郑昌文,严平,丁明跃,等.飞行器航迹规划研究现状与趋势[J].宇航学报,2007,28(6):1441-1446.

[2]Kennedy J,Eberhart R C.Particle swarm optimization[C].Proceedings of the 1995 IEEE International Conference on Neural Networks,27 November-01 December1995,Perth,Australia.

[3]陈冬,周德云,冯琦,等.基于粒子群优化算法的无人机航迹规划[J].弹箭与制导学报,2007,27(4):340-342.

[4]余伟龙,吴庆宪,姜长生.粒子群法在三维航迹规划及优化中的应用[J].电光与控制,2008,15(5):1-6.

[5]李猛,王道波,盛守照,等.基于加权k-均值聚类与粒子群优化的多航迹规划[J].系统工程与电子技术,2012,34(3):512-516.

[6]孙静,吴碧,许玉堂,等.复杂环境下无人机三维航迹规划方法研究[J].弹箭与制导学报,2014,34(3):170-174.

[7]YG Fu,MY Ding.Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV[J].IEEE Transactions on Systems,2012,42(2):511-526.

[8]QB Geng,Z Zhao.A kind of route planning method for UAV based on improved PSO algorithm[C].25th Chinese Control and Decision Conference,25-27 May 2013,Guiyang,China.

[9]郝震,张健,朱凡,等.雷达威胁环境下的无人机三维航迹规划[J].飞行力学,2010,28(1):47-52.

[10]刘爱军,杨育,李斐,等.混沌模拟退火粒子群优化算法研究及应用[J].浙江大学学报,2013,47(10):1722-1730.

[11]王景杰,吴文启,梁朝阳,等.无人飞行器航迹规划评价方法研究[J].计算机测量与控制,2012,20(8):2193-2196.

[12]李士波,孙秀霞,王栋,等.无人机动态环境实时航迹规划[J].系统工程与电子技术,2007,29(3):399-401.

[13]胡中华.基于智能优化算法的无人机航迹规划若干关键技术研究[D].南京:南京航空航天大学,2011.

[14]陈琳,白振兴.应用PSO算法的无人机三维航迹规划[J].电光与控制,2008,15(4):50-53.

Basic Information:

DOI:10.16358/j.issn.1009-1300.2017.02.11

China Classification Code:V279

Citation Information:

[1]唐汇禹,彭世蕤,孙经蛟等.基于SAPSO算法的无人机三维航迹规划[J].战术导弹技术,2017,No.182(02):62-68.DOI:10.16358/j.issn.1009-1300.2017.02.11.

Fund Information:

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search